Tribune News Network

Doha

Researchers at Weill Cornell Medicine-Qatar (WCM-Q) have created a vastly intricate molecular map of the human body and its complex physiological processes based on deep analysis of blood, urine and saliva samples from many hundreds of individuals.

The exhaustive study collated data from a wide series of existing research projects conducted at WCM-Q over the past 12 years in which researchers used cutting-edge technologies to analyse the interlinked molecular characteristics that make up each human being, including their genomic data (DNA), their transcriptome (RNA), their proteins and their metabolites, such as amino acids, sugars and lipids (fats), and other data.

The data from each of the samples, which were collected from 391 participants of the multiethnic diabetes Qatar Metabolomics Study of Diabetes (QMDiab), were mapped to discover associations and pathways linking genetic characteristics with specific proteins, metabolic processes and diseases.

The researchers then painstakingly integrated the mass of data from all of the individuals into a free-to-access online model they call ‘The Molecular Human’. The model provides a powerful interactive visual reference tool that can be used by other interested in investigating the complex molecular make-up of humans and discovering the underlying traits associated with various debilitating diseases.

The project, led by Dr Karsten Suhre, professor of physiology and biophysics, and Dr Ania Halama, assistant professor of research in physiology and biophysics, has been published in Nature Communications.

The approach of combining genomic, transcriptomic, metabolomic, proteomic and other forms of so-called ‘-omics’ research is known as ‘multiomics’. Multiomics has emerged in recent years as a key strategy for biomedical researchers seeking to understand how the human body and diseases truly function, providing insights that could potentially enable the development of new drug therapies.

Dr Suhre said, "Our idea was to bring together everything we have learned over more than a decade of multiomics research to create a very comprehensive molecular model of the human body and its processes. This reference tool is free to access and use and can be utilised by researchers who want to investigate how the human body works at molecular level and also for the formation of hypotheses to test with experimentation.”

Dr Halama said, "A researcher could, for example, use the Molecular Human tool to identify a pathway that shows an association between a particular gene or location within in a gene with a specific sub-type of diabetes or another characteristic. They can then hypothesise that the gene and the disease are associated and design an experiment to test that hypothesis. The scale of the data contained within the model means that there are hundreds of thousands of pathways and associations for researchers to explore, giving huge potential for discovery and investigation.”

The Qatar Metabolomics Study of Diabetes (QMDiab), from which the project sourced its data, was originally designed as a diabetes case-control study in the multiethnic population of Qatar.

Through a collaboration with Hamad Medical Corporation, the researchers collected multiple aliquots of blood, urine and saliva samples from 391 volunteers, with and without diabetes, of predominantly Arab, Filipino or Indian ethnic backgrounds with the goal of acquiring sufficient material for ‘multiomic’ analysis (see methods).

The collected samples were subsequently characterised on a total of 18 different high-throughput analysis platforms, providing an extremely rich dataset. Indeed, 6,300 individual data points were collected for each of the 391 participants.

In addition, samples were genotyped for 1.2 million genetic variants, the white blood cell transcriptome was sequenced at a depth of 20 million reads to quantify the expression of 57,000 transcripts, and DNA methylation levels for 450,000 CpG sites were determined.

The study also utilised the integrated multiomics data to identify and describe molecular milieu of proteins and metabolites which are recognised as signatures of subtypes of type 2 diabetes, shedding light on the different ways the disease manifests.

Dr Suhre is supported by the Biomedical Research Programme at Weill Cornell Medicine in Qatar, a programme funded by Qatar Foundation.

He is also supported by the Qatar National Research Fund (QNRF) grant NPRP11C-0115-180010 and ARG01-0420-23000.

Dr Halama is supported by the Qatar National Research Fund (QNRF) grant NPRP12S-0205-190042 and NPRP11S-0122-180359.

The paper can be read in full here (https://www.nature.com/articles/s41467-024-51134-x)

The free-to-access interactive Molecular Human interface can be accessed at QMDiab comics (shinyapps.io)